date

period

Batch 505fdad5

Right or Wrong

Version 1

	x	y
\overline{A}	4.20353	-1.60633
B	1.23705	4.32663
C	-1.23705	-4.32663

Round answers to 2 decimals.

Distance squared
$$d^2 = (x_2 - x_1)^2 + (y_2 - y_1)^2$$

Slope
$$m = \frac{y_2 - y_1}{x_2 - x_1}$$

(1)
$$= (AB)^2$$
 Compute distance squared of \overline{AB} .

(5)
$$= m_{AB}$$

Compute slope of \overline{AB}

(2)
$$= (AC)^2$$
 Compute distance squared of \overline{AC} .

(6)
$$= m_{AC}$$

Compute slope of \overline{AC}

(3)
$$= (AB)^2 + (AC)^2$$
 Sum answers from (1) and (2).

(7)
$$= m_{AB} \times m_{AC}$$

Multiply answers from (5) and (6).

$$(4) \boxed{ = (BC)^2}$$

- (8) I know that $\triangle ABC$ is a right triangle because:
 - (A) It looks like a right triangle.
 - (B) The sides satisfy the Pythagorean Theorem,
 - (C) The slopes of the legs are negative reciprocals.
 - (D) All of the above.

date

period

Batch 505fdad5

Right or Wrong

Version 2

	x	y
A	6.96482	-0.700889
B	3.61818	5.99239
C	-3.61818	-5.99239

Distance squared
$$d^2 = (x_2 - x_1)^2 + (y_2 - y_1)^2$$

Slope
$$m = \frac{y_2 - y_1}{x_2 - x_1}$$

(1)
$$= (AB)^2$$
 Compute distance squared of \overline{AB} .

(5)
$$= m_{AB}$$
 Compute slope of \overline{AB}

(2)
$$= (AC)^2$$
 Compute distance squared of \overline{AC} .

(6)
$$= m_{AC}$$

Compute slope of \overline{AC}

(3)
$$= (AB)^2 + (AC)^2$$
 Sum answers from (1) and (2).

(7)
$$= m_{AB} \times m_{AC}$$

Multiply answers from (5) and (6).

(4)
$$\boxed{ = (BC)^2}$$

Compute distance squared of \overline{BC} .

- (8) I know that $\triangle ABC$ is a right triangle because:
 - (A) It looks like a right triangle.
 - (B) The sides satisfy the Pythagorean Theorem,
 - (C) The slopes of the legs are negative reciprocals.
 - (D) All of the above.

date

period

Batch 505fdad5

Right or Wrong

Version 3

	x	y
\overline{A}	5.53095	-4.29053
B	6.75569	1.8332
C	-6.75569	-1.8332

Distance squared
$$d^2 = (x_2 - x_1)^2 + (y_2 - y_1)^2$$

Slope
$$m = \frac{y_2 - y_1}{x_2 - x_1}$$

(1)
$$= (AB)^2$$
 Compute distance squared of \overline{AB} .

(5)
$$= m_{AB}$$
 Compute slope of \overline{AB}

(2)
$$= (AC)^2$$
 Compute distance squared of \overline{AC} .

(6)
$$= m_{AC}$$

Compute slope of \overline{AC}

(3)
$$= (AB)^2 + (AC)^2$$
 Sum answers from (1) and (2).

(7)
$$= m_{AB} \times m_{AC}$$

Multiply answers from (5) and (6).

(4)
$$\boxed{ = (BC)^2}$$

Compute distance squared of \overline{BC} .

- (8) I know that $\triangle ABC$ is a right triangle because:
 - (A) It looks like a right triangle.
 - (B) The sides satisfy the Pythagorean Theorem,
 - (C) The slopes of the legs are negative reciprocals.
 - (D) All of the above.

name

date

period

Batch 505fdad5

Right or Wrong

Version 4

	x	y
\overline{A}	0.866174	3.39113
B	-3.23261	1.34174
C	3.23261	-1.34174

Distance squared
$$d^2 = (x_2 - x_1)^2 + (y_2 - y_1)^2$$

Slope
$$m = \frac{y_2 - y_1}{x_2 - x_1}$$

(1)
$$= (AB)^2$$
 Compute distance squared of \overline{AB} .

(5)
$$= m_{AB}$$
 Compute slope of \overline{AB}

(2)
$$= (AC)^2$$
 Compute distance squared of \overline{AC} .

(6)
$$\boxed{} = m_{AC}$$

Compute slope of \overline{AC}

(3)
$$= (AB)^2 + (AC)^2$$
 Sum answers from (1) and (2).

(7)
$$= m_{AB} \times m_{AC}$$

Multiply answers from (5) and (6).

(4)
$$\boxed{ = (BC)^2}$$

Compute distance squared of \overline{BC} .

- (8) I know that $\triangle ABC$ is a right triangle because:
 - (A) It looks like a right triangle.
 - (B) The sides satisfy the Pythagorean Theorem,
 - (C) The slopes of the legs are negative reciprocals.
 - (D) All of the above.

name

date

period

Batch 505fdad5

Right or Wrong

Version 5

	x	y
A	-3.46392	-0.0352391
B	2.12177	-2.82809
C	-2.12177	2.82809

Round answers to 2 decimals.

Distance squared
$$d^2 = (x_2 - x_1)^2 + (y_2 - y_1)^2$$

Slope
$$m = \frac{y_2 - y_1}{x_2 - x_1}$$

(1)
$$= (AB)^2$$
 Compute distance squared of \overline{AB} .

(5)
$$= m_{AB}$$
 Compute slope of \overline{AB}

(2)
$$= (AC)^2$$
 Compute distance squared of \overline{AC} .

(6)
$$= m_{AC}$$

Compute slope of \overline{AC}

(3)
$$= (AB)^2 + (AC)^2$$
 Sum answers from (1) and (2).

(7)
$$= m_{AB} \times m_{AC}$$

Multiply answers from (5) and (6).

$$(4) \boxed{ = (BC)^2}$$

- (8) I know that $\triangle ABC$ is not a right triangle because:
 - (A) The sides do not satisfy the Pythagorean Theorem,
 - (B) The slopes of the legs are not negative reciprocals.
 - (C) Looks can be deceiving.
 - (D) All of the above.

date

period

Batch 505fdad5

Right or Wrong

Version 6

	x	y
\overline{A}	4.30237	-1.22049
B	-1.26539	4.34727
C	1.26539	-4.34727

Distance squared
$$d^2 = (x_2 - x_1)^2 + (y_2 - y_1)^2$$

Slope
$$m = \frac{y_2 - y_1}{x_2 - x_1}$$

(1)
$$= (AB)^2$$
 Compute distance squared of \overline{AB} .

(5)
$$= m_{AB}$$
 Compute slope of \overline{AB}

(2)
$$= (AC)^2$$
 Compute distance squared of \overline{AC} .

(6)
$$= m_{AC}$$
 Compute slope of \overline{AC}

(3)
$$= (AB)^2 + (AC)^2$$
 Sum answers from (1) and (2).

(7)
$$= m_{AB} \times m_{AC}$$

Multiply answers from (5) and (6).

(4)
$$= (BC)^2$$
 Compute distance squared of \overline{BC} .

- (8) I know that $\triangle ABC$ is not a right triangle because:
 - (A) The sides do not satisfy the Pythagorean Theorem,
 - (B) The slopes of the legs are not negative reciprocals.
 - (C) Looks can be deceiving.
 - (D) All of the above.

date

period

Batch 505fdad5

Right or Wrong

Version 7

	x	y
\overline{A}	6.2301	1.8536
B	-2.25518	6.09624
C	2.25518	-6.09624

Distance squared
$$d^2 = (x_2 - x_1)^2 + (y_2 - y_1)^2$$

Slope
$$m = \frac{y_2 - y_1}{x_2 - x_1}$$

- (1) $= (AB)^2$ Compute distance squared of \overline{AB} .
- (5) $= m_{AB}$ Compute slope of \overline{AB}
- (2) $= (AC)^2$ Compute distance squared of \overline{AC} .
- (6) $= m_{AC}$ Compute slope of \overline{AC}
- (3) $= (AB)^2 + (AC)^2$ Sum answers from (1) and (2).
- (7) $= m_{AB} \times m_{AC}$ Multiply answers from (5) and (6).
- (4) $\boxed{ = (BC)^2}$ Compute distance squared of \overline{BC} .
- (8) I know that $\triangle ABC$ is a right triangle because:
 - (A) It looks like a right triangle.
 - (B) The sides satisfy the Pythagorean Theorem,
 - (C) The slopes of the legs are negative reciprocals.
 - (D) All of the above.

date

period

Batch 505fdad5

Right or Wrong

Version 8

	x	y
\overline{A}	2.18991	-2.05043
B	2.81009	1.05043
C	-2.81009	-1.05043

Round answers to 2 decimals.

Distance squared
$$d^2 = (x_2 - x_1)^2 + (y_2 - y_1)^2$$

Slope $m = \frac{y_2 - y_1}{x_2 - x_1}$

(1)
$$= (AB)^2$$
 Compute distance squared of \overline{AB} .

(5)
$$= m_{AB}$$
 Compute slope of \overline{AB}

(2)
$$= (AC)^2$$
 Compute distance squared of \overline{AC} .

(6)
$$= m_{AC}$$

Compute slope of \overline{AC}

(3)
$$= (AB)^2 + (AC)^2$$
 Sum answers from (1) and (2).

(7)
$$= m_{AB} \times m_{AC}$$

Multiply answers from (5) and (6).

(4)
$$\boxed{ = (BC)^2}$$

Compute distance squared of \overline{BC} .

- (8) I know that $\triangle ABC$ is a right triangle because:
 - (A) It looks like a right triangle.
 - (B) The sides satisfy the Pythagorean Theorem,
 - (C) The slopes of the legs are negative reciprocals.
 - (D) All of the above.

date

period

Batch 505fdad5

Right or Wrong

Version 9

	x	y
\overline{A}	2.15015	7.6894
B	-7.48313	2.87276
C	7.48313	-2.87276

Distance squared
$$d^2 = (x_2 - x_1)^2 + (y_2 - y_1)^2$$

Slope
$$m = \frac{y_2 - y_1}{x_2 - x_1}$$

(1)
$$= (AB)^2$$
 Compute distance squared of \overline{AB} .

(5)
$$= m_{AB}$$
 Compute slope of \overline{AB}

(2)
$$= (AC)^2$$
 Compute distance squared of \overline{AC} .

(6)
$$= m_{AC}$$

Compute slope of \overline{AC}

(3)
$$= (AB)^2 + (AC)^2$$
 Sum answers from (1) and (2).

(7)
$$= m_{AB} \times m_{AC}$$

Multiply answers from (5) and (6).

(4)
$$= (BC)^2$$
 Compute distance squared of \overline{BC} .

- (8) I know that $\triangle ABC$ is not a right triangle because:
 - (A) The sides do not satisfy the Pythagorean Theorem,
 - (B) The slopes of the legs are not negative reciprocals.
 - (C) Looks can be deceiving.
 - (D) All of the above.

name

date

period

Batch 505fdad5

Right or Wrong

Version 10

	x	y
\overline{A}	-3.69893	7.09351
B	-7.89417	-1.29696
C	7.89417	1.29696

Round answers to 2 decimals.

Distance squared
$$d^2 = (x_2 - x_1)^2 + (y_2 - y_1)^2$$

Slope
$$m = \frac{y_2 - y_1}{x_2 - x_1}$$

(1)
$$= (AB)^2$$
 Compute distance squared of \overline{AB} .

(5)
$$= m_{AB}$$
 Compute slope of \overline{AB}

(2)
$$= (AC)^2$$
 Compute distance squared of \overline{AC} .

(6)
$$= m_{AC}$$

Compute slope of \overline{AC}

(3)
$$= (AB)^2 + (AC)^2$$
 Sum answers from (1) and (2).

(7)
$$= m_{AB} \times m_{AC}$$

Multiply answers from (5) and (6).

$$(4) \boxed{ } = (BC)^2$$

- (8) I know that $\triangle ABC$ is a right triangle because:
 - (A) It looks like a right triangle.
 - (B) The sides satisfy the Pythagorean Theorem,
 - (C) The slopes of the legs are negative reciprocals.
 - (D) All of the above.

date

period

Batch 505fdad5

Right or Wrong

Version 11

	x	y
\overline{A}	2.74161	-1.21803
B	2.06224	2.1788
C	-2.06224	-2.1788

Round answers to 2 decimals.

Distance squared
$$d^2 = (x_2 - x_1)^2 + (y_2 - y_1)^2$$

Slope $m = \frac{y_2 - y_1}{x_2 - x_1}$

Compute distance squared of \overline{AB} .

(5) $= m_{AB}$ Compute slope of \overline{AB}

(2)
$$= (AC)^2$$
 Compute distance squared of \overline{AC} .

(6) $= m_{AC}$ Compute slope of \overline{AC}

(3)
$$= (AB)^2 + (AC)^2$$
 Sum answers from (1) and (2).

(7) $= m_{AB} \times m_{AC}$ Multiply answers from (5) and (6).

$$(4) \boxed{ } = (BC)^2$$

- (8) I know that $\triangle ABC$ is a right triangle because:
 - (A) It looks like a right triangle.
 - (B) The sides satisfy the Pythagorean Theorem,
 - (C) The slopes of the legs are negative reciprocals.
 - (D) All of the above.

date

period

Batch 505fdad5

Right or Wrong

Version 12

	x	y
\overline{A}	-5.65133	-5.66237
B	7.39445	-3.05322
C	-7.39445	3.05322

Distance squared
$$d^2 = (x_2 - x_1)^2 + (y_2 - y_1)^2$$

Slope
$$m = \frac{y_2 - y_1}{x_2 - x_1}$$

- (1) $= (AB)^2$ Compute distance squared of \overline{AB} .
- (5) $= m_{AB}$ Compute slope of \overline{AB}
- (2) $= (AC)^2$ Compute distance squared of \overline{AC} .
- (6) $= m_{AC}$ Compute slope of \overline{AC}
- (3) $= (AB)^2 + (AC)^2$ Sum answers from (1) and (2).
- (7) $= m_{AB} \times m_{AC}$ Multiply answers from (5) and (6).
- (4) $\boxed{ = (BC)^2}$ Compute distance squared of \overline{BC} .
- (8) I know that $\triangle ABC$ is a right triangle because:
 - (A) It looks like a right triangle.
 - (B) The sides satisfy the Pythagorean Theorem,
 - (C) The slopes of the legs are negative reciprocals.
 - (D) All of the above.

date

period

Batch 505fdad5

Right or Wrong

Version 13

	x	y
\overline{A}	2.31499	-6.60612
B	6.67389	2.11168
C	-6.67389	-2.11168

Distance squared
$$d^2 = (x_2 - x_1)^2 + (y_2 - y_1)^2$$

Slope
$$m = \frac{y_2 - y_1}{x_2 - x_1}$$

- - Compute distance squared of \overline{AB} .
- (2) $= (AC)^2$ Compute distance squared of \overline{AC} .
- (3) $= (AB)^2 + (AC)^2$ Sum answers from (1) and (2).
- (4) $= (BC)^2$ Compute distance squared of \overline{BC} .

- (5) $= m_{AB}$ Compute slope of \overline{AB}
- (6) $= m_{AC}$ Compute slope of \overline{AC}
- (7) $= m_{AB} \times m_{AC}$ Multiply answers from (5) and (6).

- (8) I know that $\triangle ABC$ is a right triangle because:
 - (A) It looks like a right triangle.
 - (B) The sides satisfy the Pythagorean Theorem,
 - (C) The slopes of the legs are negative reciprocals.
 - (D) All of the above.

date

period

Batch 505fdad5

Right or Wrong

Version 14

	x	y
\overline{A}	-1.56136	-3.68268
B	3.68268	1.56136
C	-3.68268	-1.56136

Distance squared
$$d^2 = (x_2 - x_1)^2 + (y_2 - y_1)^2$$

Slope
$$m = \frac{y_2 - y_1}{x_2 - x_1}$$

(1)
$$= (AB)^2$$
 Compute distance squared of \overline{AB} .

(5)
$$= m_{AB}$$
 Compute slope of \overline{AB}

(2)
$$= (AC)^2$$
 Compute distance squared of \overline{AC} .

(6)
$$= m_{AC}$$

Compute slope of \overline{AC}

(3)
$$= (AB)^2 + (AC)^2$$
 Sum answers from (1) and (2).

(7)
$$= m_{AB} \times m_{AC}$$

Multiply answers from (5) and (6).

(4)
$$\boxed{ = (BC)^2}$$

Compute distance squared of \overline{BC} .

- (8) I know that $\triangle ABC$ is a right triangle because:
 - (A) It looks like a right triangle.
 - (B) The sides satisfy the Pythagorean Theorem,
 - (C) The slopes of the legs are negative reciprocals.
 - (D) All of the above.

date

period

Batch 505fdad5

Right or Wrong

Version 15

	x	y
\overline{A}	-0.286517	5.01676
B	-4.1595	-2.7292
C	4.1595	2.7292

Round answers to 2 decimals.

Distance squared
$$d^2 = (x_2 - x_1)^2 + (y_2 - y_1)^2$$

Slope $m = \frac{y_2 - y_1}{x_2 - x_1}$

(1)
$$= (AB)^2$$
 Compute distance squared of \overline{AB} .

(5)
$$= m_{AB}$$
 Compute slope of \overline{AB}

(2)
$$= (AC)^2$$
 Compute distance squared of \overline{AC} .

(6)
$$= m_{AC}$$

Compute slope of \overline{AC}

(3)
$$= (AB)^2 + (AC)^2$$
 Sum answers from (1) and (2).

(7)
$$= m_{AB} \times m_{AC}$$

Multiply answers from (5) and (6).

(4)
$$\boxed{ = (BC)^2}$$

Compute distance squared of \overline{BC} .

- (8) I know that $\triangle ABC$ is not a right triangle because:
 - (A) The sides do not satisfy the Pythagorean Theorem,
 - (B) The slopes of the legs are not negative reciprocals.
 - (C) Looks can be deceiving.
 - (D) All of the above.

date

period

Batch 505fdad5

Right or Wrong

Version 16

	x	y
\overline{A}	-0.9317	-2.3199
B	2.41494	-0.64658
C	-2.41494	0.64658

Distance squared
$$d^2 = (x_2 - x_1)^2 + (y_2 - y_1)^2$$

Slope
$$m = \frac{y_2 - y_1}{x_2 - x_1}$$

- (1) $= (AB)^2$ Compute distance squared of \overline{AB} .
- (5) $= m_{AB}$ Compute slope of \overline{AB}
- (2) $= (AC)^2$ Compute distance squared of \overline{AC} .
- (6) $\boxed{} = m_{AC}$ Compute slope of \overline{AC}
- (3) $= (AB)^2 + (AC)^2$ Sum answers from (1) and (2).
- (7) $= m_{AB} \times m_{AC}$ Multiply answers from (5) and (6).
- (4) $= (BC)^2$ Compute distance squared of \overline{BC} .
- (8) I know that $\triangle ABC$ is a right triangle because:
 - (A) It looks like a right triangle.
 - (B) The sides satisfy the Pythagorean Theorem,
 - (C) The slopes of the legs are negative reciprocals.
 - (D) All of the above.

date

period

Batch 505fdad5

Right or Wrong

Version 17

	x	y
\overline{A}	2.94188	1.89613
B	-2.50816	2.44114
C	2.50816	-2.44114

Round answers to 2 decimals.

Distance squared
$$d^2 = (x_2 - x_1)^2 + (y_2 - y_1)^2$$

Slope $m = \frac{y_2 - y_1}{x_2 - x_1}$

(1)
$$= (AB)^2$$
 Compute distance squared of \overline{AB} .

(5)
$$= m_{AB}$$
 Compute slope of \overline{AB}

(2)
$$= (AC)^2$$
 Compute distance squared of \overline{AC} .

(6)
$$= m_{AC}$$

Compute slope of \overline{AC}

(3)
$$= (AB)^2 + (AC)^2$$
 Sum answers from (1) and (2).

(7)
$$= m_{AB} \times m_{AC}$$

Multiply answers from (5) and (6).

(4)
$$= (BC)^2$$
Compute distance squared of \overline{C}

- (8) I know that $\triangle ABC$ is a right triangle because:
 - (A) It looks like a right triangle.
 - (B) The sides satisfy the Pythagorean Theorem,
 - (C) The slopes of the legs are negative reciprocals.
 - (D) All of the above.

date

period

Batch 505fdad5

Right or Wrong

Version 18

	x	y
\overline{A}	0.951154	-2.88882
B	1.9702	2.20642
C	-1.9702	-2.20642

Round answers to 2 decimals.

Distance squared
$$d^2 = (x_2 - x_1)^2 + (y_2 - y_1)^2$$

Slope $m = \frac{y_2 - y_1}{x_2 - x_1}$

$$(1) \boxed{ = (AB)^2}$$

Compute distance squared of \overline{AB} .

(5) $= m_{AB}$ Compute slope of \overline{AB}

(2)
$$= (AC)^2$$
 Compute distance squared of \overline{AC} .

(6) $= m_{AC}$ Compute slope of \overline{AC}

(3)
$$= (AB)^2 + (AC)^2$$
 Sum answers from (1) and (2).

(7) $= m_{AB} \times m_{AC}$ Multiply answers from (5) and (6).

$$(4) \boxed{ } = (BC)^2$$

- (8) I know that $\triangle ABC$ is not a right triangle because:
 - (A) The sides do not satisfy the Pythagorean Theorem,
 - (B) The slopes of the legs are not negative reciprocals.
 - (C) Looks can be deceiving.
 - (D) All of the above.

date

period

Batch 505fdad5

Right or Wrong

Version 19

	x	y
\overline{A}	2.64785	-7.01704
B	1.20591	7.40242
C	-1.20591	-7.40242

Distance squared
$$d^2 = (x_2 - x_1)^2 + (y_2 - y_1)^2$$

Slope
$$m = \frac{y_2 - y_1}{x_2 - x_1}$$

(1)
$$= (AB)^2$$
 Compute distance squared of \overline{AB} .

(5)
$$= m_{AB}$$
 Compute slope of \overline{AB}

(2)
$$= (AC)^2$$
 Compute distance squared of \overline{AC} .

(6)
$$= m_{AC}$$
 Compute slope of \overline{AC}

(3)
$$= (AB)^2 + (AC)^2$$
 Sum answers from (1) and (2).

(7)
$$= m_{AB} \times m_{AC}$$

Multiply answers from (5) and (6).

(4)
$$\boxed{ = (BC)^2}$$

Compute distance squared of \overline{BC} .

- (8) I know that $\triangle ABC$ is a right triangle because:
 - (A) It looks like a right triangle.
 - (B) The sides satisfy the Pythagorean Theorem,
 - (C) The slopes of the legs are negative reciprocals.
 - (D) All of the above.

period

Batch 505fdad5

Right or Wrong

Version 20

	x	y
\overline{A}	1.51585	3.19409
B	-3.38313	0.744599
C	3.38313	-0.744599

Distance squared
$$d^2 = (x_2 - x_1)^2 + (y_2 - y_1)^2$$

Slope
$$m = \frac{y_2 - y_1}{x_2 - x_1}$$

(1)
$$= (AB)^2$$
 Compute distance squared of \overline{AB} .

(5)
$$= m_{AB}$$
 Compute slope of \overline{AB}

(2)
$$= (AC)^2$$
 Compute distance squared of \overline{AC} .

(6)
$$= m_{AC}$$

Compute slope of \overline{AC}

(3)
$$= (AB)^2 + (AC)^2$$
 Sum answers from (1) and (2).

(7)
$$= m_{AB} \times m_{AC}$$

Multiply answers from (5) and (6).

(4)
$$= (BC)^2$$
 Compute distance squared of \overline{BC} .

- (8) I know that $\triangle ABC$ is not a right triangle because:
 - (A) The sides do not satisfy the Pythagorean Theorem,
 - (B) The slopes of the legs are not negative reciprocals.
 - (C) Looks can be deceiving.
 - (D) All of the above.

date

period

Batch 505fdad5

Right or Wrong

Version 21

	x	y
\overline{A}	3.34155	6.15094
B	-4.49338	5.36745
C	4.49338	-5.36745

Round answers to 2 decimals.

Distance squared
$$d^2 = (x_2 - x_1)^2 + (y_2 - y_1)^2$$

Slope
$$m = \frac{y_2 - y_1}{x_2 - x_1}$$

(1)
$$= (AB)^2$$
 Compute distance squared of \overline{AB} .

(5)
$$= m_{AB}$$

Compute slope of \overline{AB}

(2)
$$= (AC)^2$$
 Compute distance squared of \overline{AC} .

(6)
$$= m_{AC}$$

Compute slope of \overline{AC}

(3)
$$= (AB)^2 + (AC)^2$$
 Sum answers from (1) and (2).

(7)
$$= m_{AB} \times m_{AC}$$

Multiply answers from (5) and (6).

$$(4) \boxed{ = (BC)^2}$$

- (8) I know that $\triangle ABC$ is a right triangle because:
 - (A) It looks like a right triangle.
 - (B) The sides satisfy the Pythagorean Theorem,
 - (C) The slopes of the legs are negative reciprocals.
 - (D) All of the above.

date

period

Batch 505fdad5

Right or Wrong

Version 22

	x	y
\overline{A}	0.484626	6.96528
B	-6.99869	-0.518034
C	6.99869	0.518034

Round answers to 2 decimals.

Distance squared
$$d^2 = (x_2 - x_1)^2 + (y_2 - y_1)^2$$

Slope
$$m = \frac{y_2 - y_1}{x_2 - x_1}$$

(1)
$$= (AB)^2$$
 Compute distance squared of \overline{AB} .

(5)
$$= m_{AB}$$
 Compute slope of \overline{AB}

(2)
$$= (AC)^2$$
 Compute distance squared of \overline{AC} .

(6)
$$= m_{AC}$$

Compute slope of \overline{AC}

(3)
$$= (AB)^2 + (AC)^2$$
 Sum answers from (1) and (2).

(7)
$$= m_{AB} \times m_{AC}$$

Multiply answers from (5) and (6).

(4)
$$\boxed{ = (BC)^2}$$

Compute distance squared of \overline{BC} .

(8) I know that $\triangle ABC$ is not a right triangle because:

- (A) The sides do not satisfy the Pythagorean Theorem,
- (B) The slopes of the legs are not negative reciprocals.
- (C) Looks can be deceiving.
- (D) All of the above.

date

period

Batch 505fdad5

Right or Wrong

Version 23

	x	y
\overline{A}	-1.03186	4.3801
B	-2.63714	-3.6463
C	2.63714	3.6463

Distance squared
$$d^2 = (x_2 - x_1)^2 + (y_2 - y_1)^2$$

Slope
$$m = \frac{y_2 - y_1}{x_2 - x_1}$$

(1)
$$= (AB)^2$$
 Compute distance squared of \overline{AB} .

(5)
$$= m_{AB}$$
 Compute slope of \overline{AB}

(2)
$$= (AC)^2$$
 Compute distance squared of \overline{AC} .

(6)
$$= m_{AC}$$

Compute slope of \overline{AC}

(3)
$$= (AB)^2 + (AC)^2$$
 Sum answers from (1) and (2).

(7)
$$= m_{AB} \times m_{AC}$$

Multiply answers from (5) and (6).

(4)
$$\boxed{ = (BC)^2}$$

Compute distance squared of \overline{BC} .

- (8) I know that $\triangle ABC$ is a right triangle because:
 - (A) It looks like a right triangle.
 - (B) The sides satisfy the Pythagorean Theorem,
 - (C) The slopes of the legs are negative reciprocals.
 - (D) All of the above.

date

period

Batch 505fdad5

Right or Wrong

Version 24

	x	y
\overline{A}	-5.90545	-0.935776
B	-4.23213	-4.28242
C	4.23213	4.28242

Distance squared
$$d^2 = (x_2 - x_1)^2 + (y_2 - y_1)^2$$

Slope
$$m = \frac{y_2 - y_1}{x_2 - x_1}$$

(1)
$$= (AB)^2$$
 Compute distance squared of \overline{AB} .

(5)
$$= m_{AB}$$
 Compute slope of \overline{AB}

(2)
$$= (AC)^2$$
 Compute distance squared of \overline{AC} .

(6)
$$= m_{AC}$$

Compute slope of \overline{AC}

(3)
$$= (AB)^2 + (AC)^2$$
 Sum answers from (1) and (2).

(7)
$$= m_{AB} \times m_{AC}$$

Multiply answers from (5) and (6).

(4)
$$= (BC)^2$$
 Compute distance squared of \overline{BC} .

- (8) I know that $\triangle ABC$ is not a right triangle because:
 - (A) The sides do not satisfy the Pythagorean Theorem,
 - (B) The slopes of the legs are not negative reciprocals.
 - (C) Looks can be deceiving.
 - (D) All of the above.

date

period

Batch 505fdad5

Right or Wrong

Version 25

	x	y
A	3.88391	-6.43547
B	6.3334	-3.98598
C	-6.3334	3.98598

Distance squared
$$d^2 = (x_2 - x_1)^2 + (y_2 - y_1)^2$$

Slope
$$m = \frac{y_2 - y_1}{x_2 - x_1}$$

- (1) $= (AB)^2$ Compute distance squared of \overline{AB} .
- (5) $= m_{AB}$ Compute slope of \overline{AB}
- (2) $= (AC)^2$ Compute distance squared of \overline{AC} .
- (6) $= m_{AC}$ Compute slope of \overline{AC}
- (3) $= (AB)^2 + (AC)^2$ Sum answers from (1) and (2).
- (7) $= m_{AB} \times m_{AC}$ Multiply answers from (5) and (6).
- (4) $= (BC)^2$ Compute distance squared of \overline{BC} .
- (8) I know that $\triangle ABC$ is not a right triangle because:
 - (A) The sides do not satisfy the Pythagorean Theorem,
 - (B) The slopes of the legs are not negative reciprocals.
 - (C) Looks can be deceiving.
 - (D) All of the above.

Version	1
version	Τ

(1) 44	(5) -2
(2) 37	(6) 0.5
(3) 81	(7) -1
(4) 81	
(8) D	

Version 2

(1) 56	(5) -2
(2) 140	$(6) \ 0.5$
(3) 196	(7) -1
(4) 196	
(8) D	

Version 3

(1) 39	(5) 5
$(2)\ 157$	(6) -0.2
(3) 196	(7) -1
(4) 196	, ,
(8) D	

Version 4

(1) 21	(5) 0.5
(2) 28	(6) -2
(3) 49	(7) -1
(4) 49	
(8) D	

Version 5

(1) 39	(5) -0.5
$(2)\ 10$	(6) 2.13
(3) 49	(7) -1.07
(4) 50	
(8) D	

Version 6

7	(
(1) 62	(5) -1
(2) 19	(6) 1.03
(3) 81	(7) -1.03
(4) 82	
(8) D	

Version 7

(1) 90	(5) -0.5
(2) 79	(6) 2
(3) 169	(7) -1
(4) 169	, ,
(8) D	

Version 8

(1) 10	(5) 5
(2) 26	(6) -0.2
(3) 36	(7) -1
(4) 36	,
(8) D	

Version 9

(1) 116	(5) 0.5
(2) 140	(6) -1.98
(3) 256	(7) -0.99
(4) 257	, ,
(8) D	

Version 10

(1) 88	(5) 2
$(2)\ 168$	(6) -0.5
(3) 256	(7) -1
(4) 256	
(8) D	

Version 11

(1) 12	(5) -5
(2) 24	(6) 0.2
(3) 36	(7) -1
(4) 36	, ,
(8) D	

Version 12

(1) 177	(5) 0.2
(2) 79	(6) -5
(3) 256	(7) -1
(4) 256	
(8) D	

Version 13

(1) 95	(5) 2
$(2)\ 101$	(6) -0.5
(3) 196	(7) -1
(4) 196	
(8) D	

Version 14

(1) 55	(5) 1
(2) 9	(6) -1
(3) 64	(7) -1
(4) 64	
(8) D	

Version 15

, 01	01011	
(1)	75	$(5) \qquad 2$
(2)	25	(6) -0.51
(3)	100	(7) -1.02
(4)	99	
(8)	D	

Version 16

(1) 14	(5) 0.5
(2) 11	(6) -2
(3) 25	(7) -1
(4) 25	
(8) D	

Version 17

(1) 30	(5)	-0.1
(2) 19	(6)	10
(3) 49	(7)	-1
(4) 49		
(8) D		

Version 18

(1) 27	(5)	5
(2) 9	(6) -	0.23
$(3) \ 36$	(7) -	1.15
(4) 35		
(8) D		

Version 19

V CI SIOII	10
(1) 210	(5) -10
(2) 15	(6) 0.1
(3) 225	(7) -1
(4) 225	
(8) D	

Version 20

V CI SIOII	20
(1) 30	(5) 0.5
(2) 19	(6) -2.11
(3) 49	(7) -1.06
(4) 48	
(8) D	

Version 21

(1) 62	(5) 0.1
(2) 134	(6) -10
(3) 196	(7) -1
(4) 196	, ,
(8) D	

$Version\ 22$

version	<i>LL</i>
(1) 112	$(5) \qquad 1$
(2) 84	(6) -0.99
(3) 196	(7) -0.99
(4) 197	
(8) D	

Version 23

()	(-)
(1) 67	(5) 5
(2) 14	(6) -0.2
(3) 81	(7) -1
(4) 81	
(8) D	

$Version\ 24$

(1) 14	(5) -2
(2) 130	(6) 0.51
(3) 144	(7) -1.02
(4) 145	
(8) D	

Version 25

$\begin{array}{ c c c }\hline (1) & 12 \\ \hline \end{array}$	(5) 1
(2) 213	(6) -1.02
(3) 225	(7) -1.02
(4) 224	
(8) D	